Skip to main content

People, planet and profit - connecting local to global

In attending the Cabot Institute Annual lecture with Professor Peter Head CBE presenting on some of the big ecological issues – and novel solutions – facing the world, it struck me that ‘big data’ and its innovative applications being put forward during the lecture provided a clear example of an older adage much loved by the green movement “think global, act local”. This is particularly important to Bristol as the city closes-in on 2015 – its year in the limelight as European Green Capital.

Moving the situation on

Although we of course had to endure the oft-used explanation about the dire situation we humans have got ourselves into – with good reason, now that there is over 90% scientific certainty in accepting that human-made CO2 emissions are causal in climate change – there was a concise set of information on how we might do something positive to self-help our way to a better future.

The valid point was made during the lecture that we are living at the most exciting and critical time in our history, in that we now know the problems we face and we actually already have the tools to do something about them, but that we aren’t connecting the problems with the solutions yet.

Connecting Communities

Professor Head sounded the clarion call to begin to use the many sources of data out there to start to enable communities to plan their own future scenarios. Sounds woolly and technocratic? Well, maybe, but I have always expressed a viewpoint that technological approaches alone cannot ‘dig ourselves out of the hole’, and that we need a social science and societal (read: community) input to these problems to begin to make the positive changes we all now clearly need to see to our dominant paradigm.

This is in fact what was being proposed in a refreshing way. Out there, in our every day lives and all around us are millions of sources of data – from pollution sensors to cameras, mobile phones to heart rate monitors, sat-nav systems to weather sensors, seismic monitors to traffic management or motion sensors – generically known as the internet of things. There are forecast to be over 30 billion internet connected devices by 2020.

There is a huge amount of data that is useful but kept separate for no good reason, and the idea postulated by Professor Head was that this can and should be integrated to allow a whole view of our local and global environments.

An example is shown in the image below, which is a city region expressed in a 3D map showing energy, water, transport infrastructures, population density, land use and land quality, geology.
To this can be added limitless other sources and layers of data. This “map” can then be used by the local community to show what effects would be experienced by making a change to the physical environment.

For example, if a city centre motorway were to be replaced by a series of tram lanes, cycle and pedestrian ways and a canal (as was done in Seoul, South Korea), what effects would this have on the local and regional economy, on travel times, health, pollution, community cohesion, education etc.

Image from Resilience.io

Solar PV is a game changer

It is hard to do justice on paper the depth of possibilities as communicated by Professor Head but I can draw it down to my own community and my own area of business.

Solar PV has apparently the highest level of public acceptance of any renewable energy source, and the sort of visioning exercise outlined would be hugely useful to planning how much deployment could or should be undertaken in any given local community and in what way. Should it be solar farms where biodiversity can be seen to increase, or building-integrated power that melts into its environment, and would the community like to own that energy source themselves, or simply have access to the outputs – there’s a whole series of interactions that this kind of mapping would enable to permit community energy and perhaps even larger ambitions such as the West of England Solar City Region to take flight rather than trundling along at ground level.

More information can be found at the following sites:

www.resilience.io
www.icesfoundation.org
www.ecosequestrust.org

This blog has been reproduced by kind permission of Kerry Burns, Your Power UK.
Read the original post on the Your Power UK website.

Popular posts from this blog

Powering the economy through the engine of Smart Local Energy Systems

How can the Government best retain key skills and re-skill and up-skill the UK workforce to support the recovery and sustainable growth? This summer the UK’s Department for Business, Energy and Industrial Strategy (BEIS) requested submission of inputs on Post-Pandemic Economic Growth. The below thoughts were submitted to the BEIS inquiry as part of input under the EnergyREV project . However, there are points raised here that, in the editing and summing up process of the submission, were cut out, hence, this blog on how the UK could power economic recovery through Smart Local Energy Systems (SLES). 1. Introduction: Factors, principles, and implications In order to transition to a sustainable and flourishing economy from our (post-)COVID reality, we must acknowledge and address the factors that shape the current economic conditions. I suggest to state the impact of such factors through a set of driving principles for the UK’s post-COVID strategy. These factors are briefly explained belo

Farming in the Páramos of Boyacá: industrialisation and delimitation in Aquitania

Labourers harvest ‘cebolla larga’ onion in Aquitania. Image credit: Lauren Blake. In October and November 2019 Caboteer  Dr Lauren Blake  spent time in Boyacá, Colombia, on a six-week fieldtrip to find out about key socio-environmental conflicts and the impacts on the inhabitants of the páramos, as part of the historical and cultural component of her research project, POR EL Páramo . Background information about the research can be found in the earlier blog on the project website . Descending down the hill in the bus from El Crucero, the pungent smell of cebolla larga onion begins to invade my nose. The surrounding land transforms into plots of uniform rows of onion tops at various stages of growth, some mostly brown soil with shoots poking out along the ridges, others long, bushy and green. Sandwiched between the cloud settled atop the mountainous páramos and the vast, dark blue-green Lake Tota, all I can see and all I can smell is onion production. Sprinklers are scattered around, dr

IncrEdible! How to save money and reduce waste

The new academic year is a chance to get to grips with managing your student loan and kitchen cupboards. Over lockdown the UK wasted a third less food than we usually would. This is brilliant, as normally over 4.5 million tonnes of edible food is wasted from UK homes every year. For students, it’s even higher. The average cost of food waste per student per week is approximately £5.25 - that's about £273 per year !  It’s not just our bank accounts that are affected by food waste – it’s our planet too. The process of growing, making, distributing, storing and cooking our food uses masses of energy, fuel and water. It generates 30% of the world’s CO₂ greenhouse gas emissions. The same amount of CO₂ as 4.6 million return flights from London to Perth, Australia! So it makes sense to keep as much food out of the bin as possible, start wasting less and saving more.  Start the new term with some food waste busting, budget cutting, environment loving habits! Here’s five easy ways to reduce