Skip to main content

Hydrogen and fuel cells: Innovative solutions for low carbon heat

On 29 February 2016, I attended a meeting in Westminster that was jointly organised by the UK Hydrogen and Fuel Cell Association (UKFCA) and Carbon Connect with the aim of discussing current challenges in the decarbonisation of heat generation in the UK. The panel included David Joffe (Committee on Climate Change), Dr. Marcus Newborough (ITM Power), Ian Chisholm (Doosan Babcock), Klaus Ullrich (Fuel Cell Energy Solutions), Phil Caldwell (Ceres Power) and was chaired by Dr Alan Whitehead MP and Shadow Energy Minister. The attendees included a number of key players in the field of hydrogen production, fuel cell and renewable energy industries, as well as organisations such as the Department for Energy and Climate Change (DECC).
Image source: Policy Connect.
To set the scene, I would like to quote some facts and figures from the 2015 Carbon Connect report on the Future of Heat (part II).

  1. The 2025 carbon reduction target is 404.4 MtCO2e (million metric tons of carbon dioxide equivalent), but the reduction levels as of 2014 have only been 288.9 MtCO2e. The current Government’s low carbon policy framework is woefully inadequate to bridge this gap.
  2. The government introduced the Renewable Heat Incentive in 2011, with the ambition of increasing the contribution of renewable energy source to 12% of the heat demand by 2020. Some of the initiatives include biomass, “energy from waste” and geothermal. However, clear policies and financial incentives are nowhere to be seen.
  3. What is the current situation of renewable heat and how good is the 12% target? The good news is that there is a slight increase in the renewable share from 2004. The really bad news is that the contribution as of 2013 is just 2.6%. The UK is further behind any other EU state with regards to its renewable heat target. Sweden has a whopping 67.2% contribution and Finland 50.9%.

Towards a decarbonised energy sector, two important networks should be considered, electrical and gas. Electrification of heat is very well suited for low carbon heat generation, however, the electricity demands at peak time could be extremely costly. The UK’s gas network is a major infrastructure which is vital for providing gas during peak heat demand. However, it needs to be re-purposed in order to carry low carbon gas such as bio-methane, hydrogen or synthetic natural gas.

It was clear from the debate that hydrogen can play an important role in decreasing carbon emissions even within the current gas network. The introduction of up to 10% of hydrogen into gas feed can still be compatible with current gas networks and modern appliances, while generating a significant carbon emission reduction. However, where is the hydrogen coming from? For heat production at the national scale, steam reforming is the only player. However, with the government pulling away from carbon capture and storage (CCS), this option cannot provide a significant reduction in carbon emissions.  Capital costs associated with electrolysers would not be able to deliver the amount of hydrogen required at peak demands. The frustration in this community with regards to the future of CCS was palpable during the networking session.

We need hydrogen, generated from renewable energy sources… but the question is how?
David Fermin (left) in the lab with some of the Electrochemistry research group at the University of Bristol.
-----------------------
This blog is written by Cabot Institute member David J. Fermin, Professor of Electrochemistry in the University of Bristol's School of Chemistry.  His research group are currently looking at the direct conversion of solar energy to chemical fuels, in particular hydrogen; the conversion of CO2 to fuels; and electrocatalysts for energy vectors (e.g. what you put in fuel cells and electrolysers).

David Fermin
David will be giving a free talk on the challenges of solar energy conversion and storage on Tuesday 12 April 2016 at 6.15 pm at the University of Bristol.  To find out more and to book your ticket, visit the University of Bristol's Public and Ceremonial Events web page.

Popular posts from this blog

Powering the economy through the engine of Smart Local Energy Systems

How can the Government best retain key skills and re-skill and up-skill the UK workforce to support the recovery and sustainable growth? This summer the UK’s Department for Business, Energy and Industrial Strategy (BEIS) requested submission of inputs on Post-Pandemic Economic Growth. The below thoughts were submitted to the BEIS inquiry as part of input under the EnergyREV project . However, there are points raised here that, in the editing and summing up process of the submission, were cut out, hence, this blog on how the UK could power economic recovery through Smart Local Energy Systems (SLES). 1. Introduction: Factors, principles, and implications In order to transition to a sustainable and flourishing economy from our (post-)COVID reality, we must acknowledge and address the factors that shape the current economic conditions. I suggest to state the impact of such factors through a set of driving principles for the UK’s post-COVID strategy. These factors are briefly explained belo

Farming in the Páramos of Boyacá: industrialisation and delimitation in Aquitania

Labourers harvest ‘cebolla larga’ onion in Aquitania. Image credit: Lauren Blake. In October and November 2019 Caboteer  Dr Lauren Blake  spent time in Boyacá, Colombia, on a six-week fieldtrip to find out about key socio-environmental conflicts and the impacts on the inhabitants of the páramos, as part of the historical and cultural component of her research project, POR EL Páramo . Background information about the research can be found in the earlier blog on the project website . Descending down the hill in the bus from El Crucero, the pungent smell of cebolla larga onion begins to invade my nose. The surrounding land transforms into plots of uniform rows of onion tops at various stages of growth, some mostly brown soil with shoots poking out along the ridges, others long, bushy and green. Sandwiched between the cloud settled atop the mountainous páramos and the vast, dark blue-green Lake Tota, all I can see and all I can smell is onion production. Sprinklers are scattered around, dr

IncrEdible! How to save money and reduce waste

The new academic year is a chance to get to grips with managing your student loan and kitchen cupboards. Over lockdown the UK wasted a third less food than we usually would. This is brilliant, as normally over 4.5 million tonnes of edible food is wasted from UK homes every year. For students, it’s even higher. The average cost of food waste per student per week is approximately £5.25 - that's about £273 per year !  It’s not just our bank accounts that are affected by food waste – it’s our planet too. The process of growing, making, distributing, storing and cooking our food uses masses of energy, fuel and water. It generates 30% of the world’s CO₂ greenhouse gas emissions. The same amount of CO₂ as 4.6 million return flights from London to Perth, Australia! So it makes sense to keep as much food out of the bin as possible, start wasting less and saving more.  Start the new term with some food waste busting, budget cutting, environment loving habits! Here’s five easy ways to reduce