Skip to main content

Hydrogen and fuel cells: Innovative solutions for low carbon heat

On 29 February 2016, I attended a meeting in Westminster that was jointly organised by the UK Hydrogen and Fuel Cell Association (UKFCA) and Carbon Connect with the aim of discussing current challenges in the decarbonisation of heat generation in the UK. The panel included David Joffe (Committee on Climate Change), Dr. Marcus Newborough (ITM Power), Ian Chisholm (Doosan Babcock), Klaus Ullrich (Fuel Cell Energy Solutions), Phil Caldwell (Ceres Power) and was chaired by Dr Alan Whitehead MP and Shadow Energy Minister. The attendees included a number of key players in the field of hydrogen production, fuel cell and renewable energy industries, as well as organisations such as the Department for Energy and Climate Change (DECC).
Image source: Policy Connect.
To set the scene, I would like to quote some facts and figures from the 2015 Carbon Connect report on the Future of Heat (part II).

  1. The 2025 carbon reduction target is 404.4 MtCO2e (million metric tons of carbon dioxide equivalent), but the reduction levels as of 2014 have only been 288.9 MtCO2e. The current Government’s low carbon policy framework is woefully inadequate to bridge this gap.
  2. The government introduced the Renewable Heat Incentive in 2011, with the ambition of increasing the contribution of renewable energy source to 12% of the heat demand by 2020. Some of the initiatives include biomass, “energy from waste” and geothermal. However, clear policies and financial incentives are nowhere to be seen.
  3. What is the current situation of renewable heat and how good is the 12% target? The good news is that there is a slight increase in the renewable share from 2004. The really bad news is that the contribution as of 2013 is just 2.6%. The UK is further behind any other EU state with regards to its renewable heat target. Sweden has a whopping 67.2% contribution and Finland 50.9%.

Towards a decarbonised energy sector, two important networks should be considered, electrical and gas. Electrification of heat is very well suited for low carbon heat generation, however, the electricity demands at peak time could be extremely costly. The UK’s gas network is a major infrastructure which is vital for providing gas during peak heat demand. However, it needs to be re-purposed in order to carry low carbon gas such as bio-methane, hydrogen or synthetic natural gas.

It was clear from the debate that hydrogen can play an important role in decreasing carbon emissions even within the current gas network. The introduction of up to 10% of hydrogen into gas feed can still be compatible with current gas networks and modern appliances, while generating a significant carbon emission reduction. However, where is the hydrogen coming from? For heat production at the national scale, steam reforming is the only player. However, with the government pulling away from carbon capture and storage (CCS), this option cannot provide a significant reduction in carbon emissions.  Capital costs associated with electrolysers would not be able to deliver the amount of hydrogen required at peak demands. The frustration in this community with regards to the future of CCS was palpable during the networking session.

We need hydrogen, generated from renewable energy sources… but the question is how?
David Fermin (left) in the lab with some of the Electrochemistry research group at the University of Bristol.
This blog is written by Cabot Institute member David J. Fermin, Professor of Electrochemistry in the University of Bristol's School of Chemistry.  His research group are currently looking at the direct conversion of solar energy to chemical fuels, in particular hydrogen; the conversion of CO2 to fuels; and electrocatalysts for energy vectors (e.g. what you put in fuel cells and electrolysers).

David Fermin
David will be giving a free talk on the challenges of solar energy conversion and storage on Tuesday 12 April 2016 at 6.15 pm at the University of Bristol.  To find out more and to book your ticket, visit the University of Bristol's Public and Ceremonial Events web page.

Popular posts from this blog

Converting probabilities between time-intervals

This is the first in an irregular sequence of snippets about some of the slightly more technical aspects of uncertainty and risk assessment.  If you have a slightly more technical question, then please email me and I will try to answer it with a snippet. Suppose that an event has a probability of 0.015 (or 1.5%) of happening at least once in the next five years. Then the probability of the event happening at least once in the next year is 0.015 / 5 = 0.003 (or 0.3%), and the probability of it happening at least once in the next 20 years is 0.015 * 4 = 0.06 (or 6%). Here is the rule for scaling probabilities to different time intervals: if both probabilities (the original one and the new one) are no larger than 0.1 (or 10%), then simply multiply the original probability by the ratio of the new time-interval to the original time-interval, to find the new probability. This rule is an approximation which breaks down if either of the probabilities is greater than 0.1. For example

1-in-200 year events

You often read or hear references to the ‘1-in-200 year event’, or ‘200-year event’, or ‘event with a return period of 200 years’. Other popular horizons are 1-in-30 years and 1-in-10,000 years. This term applies to hazards which can occur over a range of magnitudes, like volcanic eruptions, earthquakes, tsunamis, space weather, and various hydro-meteorological hazards like floods, storms, hot or cold spells, and droughts. ‘1-in-200 years’ refers to a particular magnitude. In floods this might be represented as a contour on a map, showing an area that is inundated. If this contour is labelled as ‘1-in-200 years’ this means that the current rate of floods at least as large as this is 1/200 /yr, or 0.005 /yr. So if your house is inside the contour, there is currently a 0.005 (0.5%) chance of being flooded in the next year, and a 0.025 (2.5%) chance of being flooded in the next five years. The general definition is this: ‘1-in-200 year magnitude is x’ = ‘the current rate for eve

Coconuts and climate change

Before pursuing an MSc in Climate Change Science and Policy at the University of Bristol, I completed my undergraduate studies in Environmental Science at the University of Colombo, Sri Lanka. During my final year I carried out a research project that explored the impact of extreme weather events on coconut productivity across the three climatic zones of Sri Lanka. A few months ago, I managed to get a paper published and I thought it would be a good idea to share my findings on this platform. Climate change and crop productivity  There has been a growing concern about the impact of extreme weather events on crop production across the globe, Sri Lanka being no exception. Coconut is becoming a rare commodity in the country, due to several reasons including the changing climate. The price hike in coconuts over the last few years is a good indication of how climate change is affecting coconut productivity across the country. Most coconut trees are no longer bearing fruits and thos