Skip to main content

The Nikki Project: Designing a rainwater harvesting system for an African health centre

Last summer three Engineers Without Borders (EWB) members conducted a six week recce on water supply in Nikki, Benin, last summer. After building contacts with local engineers, schools and hospitals, sourcing handwritten archived data, and finding many interesting answers to our questions, we are now working hard on designs for a rainwater harvesting system and planning this summer’s work. This blog is about our project, why it’s important and how we’re going about it.
Main high street in Nikki, northern Benin.
The Nikki Project aims to address water supply problems in the small district of Nikki, Benin. A big layer of granite near to the ground surface means there is only a seasonal water table. This means the Benin government’s method of borehole water supply, which works for the rest of the country, does not work here. Citizens are given a few hours of water supply per day (at the best of times). This water is cut until 2 am and rarely lasts past 5 am; certainly not ideal for schools and hospitals that need water for treatment during the day. Instead, citizens turn to private boreholes, wells and at the worst times, an untreated lake outside the city.
Map showing Benin at the bottom of the image.
Engineers Without Borders Bristol are partnered with a Spanish charity, OAN International, who identified this problem two years ago and asked EWB Bristol to help tackle Nikki’s water supply issues. Last summer our aim was to build a partnership with a local service, who we trusted to maintain the system in our absence and who we thought would be a good working partner to trial our designs.

Back in the UK about 25 of us meet every week to work on this project. Our main task this year has been the design of a rainwater harvesting system for a small health clinic. This clinic was established by two male nurses, funded from the money they earned working for the Benin national health service. They run the clinic by working 12 hours shifts each, with dedication and fantastic vision. Like all health services in Benin the centre charges for their services, but unlike the hospitals makes no profit from the sale of medicines. The hygiene measures taken were extraordinary for Benin; to paraphrase a Spanish medic volunteer, this was 'the first time [he] has seen a Benin child being told to wash their hands’. The clinic deals, amongst other things, with malaria and pregnancy: the two biggest causes of death in the area.
The health clinic that EWB are working with to provide a rainharvesting water supply.
The EWB Bristol team surveying the health centre site in Benin.
Our rainwater harvesting solution will consist of a large 90,000 litre storage tank, a water treatment system, and a small water tower to gravity feed the water into existing taps in the clinic. The tank will collect water during the rainy season and store it safely until the dry period when no water is available from the government supply.

This type of system has become very successful and widespread elsewhere in Sub-Saharan Africa, and if successful this type of system could be expanded to suit more clinics or schools in the region. We chose to work with this health centre because of the nurses’ incredible dedication to their cause; before we had finished explaining the concept, they had already started discussing how they would start saving up for it. While contributing to the materials is certainly something we are discussing as the cost of materials and labour is not high in Benin, a sense of ownership is key to the system being maintained properly and thus being a success.
An example of pipes not properly attached and fallen down in the wind leading to an abandoned RWH tank. This tank was built 2005. The current staff have no recollection of it ever functioning.
We are still exploring design options for our rainwater harvesting system:
  • Should the pump be manual or electric (practical in everyday or with a higher risk/cost of replacement)?
  • Should the water be chlorinated in the tank or after the tank or both? Is it worth the money if it will be chlorinated again anyway?
  • Would someone prefer a monthly job or a daily job in maintaining the water treatment system? If we use a Bernoulli chlorinator will it make chemical concentrations easier or more difficult to control? Possibly easier if they understand and potentially disastrous if they do not?
  • What construction materials are best? This needs to be considered with respect to practicality, local skill availability, durability and what is culturally accepted.
We are affiliated by Engineers Without Borders UK who are there for advice, provide pre-departure training for volunteers and offer insurance while out there. We have gratefully received £2,000 from the university Alumni Foundation and £11,000 from the Queen’s School of Engineering to support the project and the lab testing we’re planning before the trip this summer. We will be blogging and updating our website as the project progresses.

For more information about this project, photos, travel reports and journal entries can be found on our website: beninwater.my-free.website.

--------------------------------
This blog is written by Daniela Rossade, a 2nd year mechanical engineering student at the University of Bristol and is running this project as part of Engineers Without Borders Bristol.
Daniela Rossade

EWB Bristol is always looking for advice and people who have experience with rainwater harvesting and international development to learn from. We also value feedback on our ideas. If you are interested your help would be gratefully appreciated.  Please contact Daniela at ds14678@my.bristol.ac.uk.


Popular posts from this blog

Powering the economy through the engine of Smart Local Energy Systems

How can the Government best retain key skills and re-skill and up-skill the UK workforce to support the recovery and sustainable growth? This summer the UK’s Department for Business, Energy and Industrial Strategy (BEIS) requested submission of inputs on Post-Pandemic Economic Growth. The below thoughts were submitted to the BEIS inquiry as part of input under the EnergyREV project . However, there are points raised here that, in the editing and summing up process of the submission, were cut out, hence, this blog on how the UK could power economic recovery through Smart Local Energy Systems (SLES). 1. Introduction: Factors, principles, and implications In order to transition to a sustainable and flourishing economy from our (post-)COVID reality, we must acknowledge and address the factors that shape the current economic conditions. I suggest to state the impact of such factors through a set of driving principles for the UK’s post-COVID strategy. These factors are briefly explained belo

Farming in the Páramos of Boyacá: industrialisation and delimitation in Aquitania

Labourers harvest ‘cebolla larga’ onion in Aquitania. Image credit: Lauren Blake. In October and November 2019 Caboteer  Dr Lauren Blake  spent time in Boyacá, Colombia, on a six-week fieldtrip to find out about key socio-environmental conflicts and the impacts on the inhabitants of the páramos, as part of the historical and cultural component of her research project, POR EL Páramo . Background information about the research can be found in the earlier blog on the project website . Descending down the hill in the bus from El Crucero, the pungent smell of cebolla larga onion begins to invade my nose. The surrounding land transforms into plots of uniform rows of onion tops at various stages of growth, some mostly brown soil with shoots poking out along the ridges, others long, bushy and green. Sandwiched between the cloud settled atop the mountainous páramos and the vast, dark blue-green Lake Tota, all I can see and all I can smell is onion production. Sprinklers are scattered around, dr

IncrEdible! How to save money and reduce waste

The new academic year is a chance to get to grips with managing your student loan and kitchen cupboards. Over lockdown the UK wasted a third less food than we usually would. This is brilliant, as normally over 4.5 million tonnes of edible food is wasted from UK homes every year. For students, it’s even higher. The average cost of food waste per student per week is approximately £5.25 - that's about £273 per year !  It’s not just our bank accounts that are affected by food waste – it’s our planet too. The process of growing, making, distributing, storing and cooking our food uses masses of energy, fuel and water. It generates 30% of the world’s CO₂ greenhouse gas emissions. The same amount of CO₂ as 4.6 million return flights from London to Perth, Australia! So it makes sense to keep as much food out of the bin as possible, start wasting less and saving more.  Start the new term with some food waste busting, budget cutting, environment loving habits! Here’s five easy ways to reduce