Skip to main content

Is benchmarking the best route to water efficiency in the UK’s irrigated agriculture?

Irrigation pump. Image credit Wikimedia Commons.
From August 2015 to January 2016, I was lucky enough to enjoy an ESRC-funded placement at the Environment Agency. Located within the Water Resources Team, my time here was spent writing a number of independent reports on behalf of the agency. This blog is a short personal reflection of one of these reports, which you can find here. All views within this work are my own and do not represent any views, plans or policies of the Environment Agency. 

Approximately 71% of UK land (17.4 million hectares) is used for agriculture - with 9.3 million hectares (70%) of land in England used for such operations. The benefits of this land use are well-known - providing close to 50% of the UK’s food consumption.  Irrigated agriculture forms an important fulcrum within this sector, as well as contributing extensively to the rural economy. In eastern England alone, it is estimated that 50,000 jobs depend upon irrigated agriculture – with the sector reported to contribute close to £3 billion annually to the region’s economy.

It is estimated that only 1-2% of the water abstracted from rivers and groundwater in England is consumed by irrigation. When compared to the figures from other nations, this use of water by agriculture is relatively low.  In the USA, agricultural operations account for approximately 80-90% of national consumptive water use. In Australia, water usage by irrigation over 2013/14 totalled 10,730 gigalitres (Gl) – 92% of the total agricultural water usage in that period (11,561 Gl).

However, the median prediction of nine forecasts of future demand in the UK’s agricultural sector has projected a 101% increase in demand between today and 2050. In this country, irrigation’s water usage is often concentrated during the driest periods and in the catchments where resources are at their most constrained. Agriculture uses the most water in the regions where water stress is most obvious: such as East Anglia. The result is that, in some dry summers, agricultural irrigation may become the largest abstractor of water in these vulnerable catchments.

With climate change creating a degree of uncertainty surrounding future water availability across the country, it has become a necessity for policy and research to explore which routes can provide the greatest efficiency gains for agricultural resilience. A 2015 survey by the National Farmers Union  found that many farmers lack confidence in securing long term access to water for production - with only a third of those surveyed feeling confident about water availability in five years’ time. In light of this decreasing availability, the need to reduce water demand within this sector has never been more apparent.

Evidence from research and the agricultural practice across the globe provides us with a number of possible routes. Improved on-farm management practice, the use of trickle irrigation, the use of treated wastewater for irrigation and the building of reservoirs point to a potential reduction in water usage.

Yet, something stands in the way of the implementation of these schemes and policies that support them: People. The adoption of new practices tends to be determined by a number of social factors – depending on the farm and the farmer. As farmers are the agents within this change, it is important to understand the characteristics that often guide their decision-making process and actions in a socio-ecological context.

Let’s remember, there is no such thing as your ‘average farmer’. Homogeneity is not a word that British agriculture is particularly aware of. As a result, efforts to increase water use efficiency need to understand how certain characteristics influence the potential for action. Wheeler et al. have found a number of characteristics that can influence adaptation strategies. For example, a farmer with a greater belief in the presence of climate change is more likely to adopt mitigating or adaptive measures. Importantly, this can also be linked to more-demographic factors. As Islam et al. have argued, risk scepticism can be the result of a number of factors (such as: age, economic status, education, environmental and economic values) and that these can be linked to the birth cohort effect.

This is not to say that all farmers of a certain age are climate-sceptics but it does point to an important understanding of demography as a factor in the adoption of innovative measures. Wheeler et al. went on to cite variables of environment values, commercial orientation, perceptions of risk and the presence of an identified farm successor as potentially directing change in practice . Research by Stephenson has shown that farmers who adopt new technologies tend to be younger and more educated, have higher incomes, larger farm operations and are more engaged with primary sources of information.

Yet, there is one social pressure that future policy must take into account – friendly, neighbourly competition. Keeping up with the Joneses. Not wanting Farmer Giles down the lane knowing that you overuse water in an increasingly water-scarce future. This can be harnessed within a system of benchmarking. Benchmarking involves the publication of individual farm’s water use, irrigation characteristics and efficiency and farming practice. Although data is supplied anonymously, individual farmers will be able to see how they measure up against their neighbours, competitors and others elsewhere.

Benchmarking is used in other agricultural sub-sectors. A 2010 survey found that 24% of farmers from different sectors used benchmarking in their management processes. This is particularly evident in the dairy sector, where both commercial and public organisations use the methods as a way to understand individual farm performance – an important example of this would be DairyCo’s Milkbench+ initiative. In 2004, over 950,000 hectares of irrigated land in Australia, 385,000 hectares in China and 330, 000 hectares in Mexico were subjected to benchmarking processes as a mean to gauge their environmental, operational and financial characteristics.

The result is that irrigators would have the means to compare how they are performing relative to other growers – allowing the answering of important questions of ‘How well am I doing?’ ‘How much better could I do?’ and ‘How do I do it?’ Furthermore, this route can be perceived as limiting the potential for ‘free-riding’ behaviour within a catchment as well emphasise the communal nature of these vulnerable resources. We’ve all seen ‘Keeping up with the Joneses’ result in increased consumption – benchmarking provides us with an important route to use this socialised nudging for good.
--------------------------------------------------------------
This blog is written by Cabot Institute member Ed Atkins, a PhD student at the University of Bristol who studies water scarcity and environmental conflict.


Ed Atkins

Popular posts from this blog

Powering the economy through the engine of Smart Local Energy Systems

How can the Government best retain key skills and re-skill and up-skill the UK workforce to support the recovery and sustainable growth? This summer the UK’s Department for Business, Energy and Industrial Strategy (BEIS) requested submission of inputs on Post-Pandemic Economic Growth. The below thoughts were submitted to the BEIS inquiry as part of input under the EnergyREV project . However, there are points raised here that, in the editing and summing up process of the submission, were cut out, hence, this blog on how the UK could power economic recovery through Smart Local Energy Systems (SLES). 1. Introduction: Factors, principles, and implications In order to transition to a sustainable and flourishing economy from our (post-)COVID reality, we must acknowledge and address the factors that shape the current economic conditions. I suggest to state the impact of such factors through a set of driving principles for the UK’s post-COVID strategy. These factors are briefly explained belo

Farming in the Páramos of Boyacá: industrialisation and delimitation in Aquitania

Labourers harvest ‘cebolla larga’ onion in Aquitania. Image credit: Lauren Blake. In October and November 2019 Caboteer  Dr Lauren Blake  spent time in Boyacá, Colombia, on a six-week fieldtrip to find out about key socio-environmental conflicts and the impacts on the inhabitants of the páramos, as part of the historical and cultural component of her research project, POR EL Páramo . Background information about the research can be found in the earlier blog on the project website . Descending down the hill in the bus from El Crucero, the pungent smell of cebolla larga onion begins to invade my nose. The surrounding land transforms into plots of uniform rows of onion tops at various stages of growth, some mostly brown soil with shoots poking out along the ridges, others long, bushy and green. Sandwiched between the cloud settled atop the mountainous páramos and the vast, dark blue-green Lake Tota, all I can see and all I can smell is onion production. Sprinklers are scattered around, dr

IncrEdible! How to save money and reduce waste

The new academic year is a chance to get to grips with managing your student loan and kitchen cupboards. Over lockdown the UK wasted a third less food than we usually would. This is brilliant, as normally over 4.5 million tonnes of edible food is wasted from UK homes every year. For students, it’s even higher. The average cost of food waste per student per week is approximately £5.25 - that's about £273 per year !  It’s not just our bank accounts that are affected by food waste – it’s our planet too. The process of growing, making, distributing, storing and cooking our food uses masses of energy, fuel and water. It generates 30% of the world’s CO₂ greenhouse gas emissions. The same amount of CO₂ as 4.6 million return flights from London to Perth, Australia! So it makes sense to keep as much food out of the bin as possible, start wasting less and saving more.  Start the new term with some food waste busting, budget cutting, environment loving habits! Here’s five easy ways to reduce