Skip to main content

Measuring greenhouse gases during India's monsoon

NERC’s BAe-146 research aircraft at the Facility for Airborne Atmospheric Measurements (FAAM). Image credit: FAAM
This summer, researchers across the UK and India are teaming up to study the Indian monsoon as part of a £8 million observational campaign using the NERC research aircraftBAe-146

India receives 80% of its annual rainfall in three months – between June and September. There are large year-to-year differences in the strength of the monsoon, which is heavily impacted by drivers such as aerosols and large-scale weather patterns, and this has significant impact on the livelihoods of over a billion people. For example, due to the strong El Nino last year, the 2015 monsoon experienced a 14% lower precipitation than average with some regions of India facing up to 50% shortfall.  Forecasting the timing and strength of the monsoon is critical for the region and particularly for India’s farmers, who must manage water resources to avoid failing crops.  
Roadside mural of the BAe-146 in Bangalore, India. Original artist unknown.  Image credit: Guy Gratton
The observational campaign, which is part of NERC’s Drivers of Variability in the South Asian Monsoon programme, is led jointly by UK researchers: Professor Hugh Coe (University of Manchester), Dr Andy Turner (University of Reading) and Dr Adrian Matthews (University of East Anglia) and Indian scientists from the Indian Space Research Organization and Indian Institute of Science.
Bristol PhD student Dan Say installing sample containers on the BAe- 146. Image credit: Angelina Wenger
To complement this project to study physical and chemical drivers of the monsoon, I am measuring greenhouse gas from the aircraft with PhD student Dan Say (School of Chemistry, University of Bristol). Dan is gaining valuable field experience by operating several instruments aboard the BAe-146 through the intense heat and rain of the Indian monsoon.

Two of the greenhouse gases that we are studying, methane and nitrous oxide, are primarily produced during the monsoon season from India’s intensive agriculture. Methane is emitted from rice paddies, in which flooded soils create prime conditions for “anaerobic” methane production. Nitrous oxide is also emitted from these flooded soils due the large quantity of fertilizers that are applied, again through anaerobic pathways. 


Rice fields near Bangalore, India. Image credit: Guy Gratton.
Our previous understanding of the large-scale emissions of these greenhouse gases from India’s agricultural soils has been limited and we aim to further our knowledge of what controls their production. In addition to the methane concentrations measured on the aircraft, with collaborators at the Royal Holloway, University of London’s isotope facility, we are also measuring the main isotope of methane (the 13-carbon isotope), which will provide us with a valuable tool for differentiating between agricultural and other sources of methane in the region. By combining this information with other measurements from the aircraft (for example, of moisture and of other atmospheric pollutants), we aim to gain new insights on how we may reduce these emissions in the future.

In addition, many synthetic “man-made” greenhouse gases are being measured for the first time in South Asia, giving us the first look at emissions from this region of some of the most potent warming agents. These include the suite of halocarbons such as hydrofluorocarbons (HFCs) and their predecessors the hydrochlorofluorocarbons (HCFCs) and chlorofluorocarbons (CFCs). These gases will be measured on the University of Bristol School of Chemistry’s ‘Medusa’ gaschromatography-mass spectrometer (GC-MS) facility run by Professor Simon O’Doherty.

Sample canisters for collecting air that will be measured on the School of Chemistry’s ‘Medusa’ GC-MS facility. Image credit: Angelina Wenger
-------------------------------------
This blog is written by University of Bristol Cabot Institute member Dr Anita Ganesan, a NERC Research Fellow, School of Geographical Sciences, who looks at greenhouse gas emissions estimation.
Anita Ganesan

Popular posts from this blog

Are you a journalist looking for climate experts? We've got you covered

We've got lots of media trained climate change experts. If you need an expert for an interview, here is a list of Caboteers you can approach. All media enquiries should be made via  Victoria Tagg , our dedicated Media and PR Manager at the University of Bristol. Email victoria.tagg@bristol.ac.uk or call +44 (0)117 428 2489. Climate change / climate emergency / climate science / climate-induced disasters Dr Eunice Lo - expert in changes in extreme weather events such as heatwaves and cold spells , and how these changes translate to negative health outcomes including illnesses and deaths. Follow on Twitter @EuniceLoClimate . Professor Daniela Schmidt - expert in the causes and effects of climate change on marine systems . Dani is also a Lead Author on the IPCC reports. Dani will be at COP26. Dr Katerina Michalides - expert in drylands, drought and desertification and helping East African rural communities to adapt to droughts and future climate change. Follow on Twitter @_k

Urban gardens are crucial food sources for pollinators - here’s what to plant for every season

A bumblebee visits a blooming honeysuckle plant. Sidorova Mariya | Shutterstock Pollinators are struggling to survive in the countryside, where flower-rich meadows, hedges and fields have been replaced by green monocultures , the result of modern industrialised farming. Yet an unlikely refuge could come in the form of city gardens. Research has shown how the havens that urban gardeners create provide plentiful nectar , the energy-rich sugar solution that pollinators harvest from flowers to keep themselves flying. In a city, flying insects like bees, butterflies and hoverflies, can flit from one garden to the next and by doing so ensure they find food whenever they need it. These urban gardens produce some 85% of the nectar found in a city. Countryside nectar supplies, by contrast, have declined by one-third in Britain since the 1930s. Our new research has found that this urban food supply for pollinators is also more diverse and continuous

#CabotNext10 Spotlight on City Futures

In conversation with Dr Katharina Burger, theme lead at the Cabot Institute for the Environment. Dr Katharina Burger Why did you choose to become a theme leader at Cabot Institute ? I applied to become a Theme Leader at Cabot, a voluntary role, to bring together scientists from different faculties to help us jointly develop proposals to address some of the major challenges facing our urban environments. My educational background is in Civil Engineering at Bristol and I am now in the School of Management, I felt that this combination would allow me to build links and communicate across different ways of thinking about socio-technical challenges and systems. In your opinion, what is one of the biggest global challenges associated with your theme? (Feel free to name others if there is more than one) The biggest challenge is to evolve environmentally sustainable, resilient, socially inclusive, safe and violence-free and economically productive cities. The following areas are part of this c