Skip to main content

Why we need a new science of safety

It is often said that our approach to health and safety has gone mad. But the truth is that it needs to go scientific. Managing risk is ultimately linked to questions of engineering and economics. Can something be made safer? How much will that safety cost? Is it worth that cost?

Decisions under uncertainty can be explained using utility, a concept introduced by Swiss mathematician Daniel Bernoulli 300 years ago, to measure the amount of reward received by an individual. But the element of risk will still be there. And where there is risk, there is risk aversion.
Risk aversion itself is a complex phenomenon, as illustrated by psychologist John W. Atkinson’s 1950s experiment, in which five-year-old children played a game of throwing wooden hoops around pegs, with rewards based on successful throws and the varying distances the children chose to stand from the pegs.

The risk-confident stood a challenging but realistic distance away, but the risk averse children fell into two camps. Either they stood so close to the peg that success was almost guaranteed or, more perplexingly, positioned themselves so far away that failure was almost certain. Thus some risk averse children were choosing to increase, not decrease, their chance of failure.

So clearly high aversion to risk can induce some strange effects. These might be unsafe in the real world, as testified by author Robert Kelsey, who said that during his time as a City trader, “bad fear” in the financial world led to either “paralysis… or nonsensical leaps”. Utility theory predicts a similar effect, akin to panic, in a large organisation if the decision maker’s aversion to risk gets too high. At some point it is not possible to distinguish the benefits of implementing a protection system from those of doing nothing at all.

So when it comes to human lives, how much money should we spend on making them safe? Some people prefer not to think about the question, but those responsible for industrial safety or health services do not have that luxury. They have to ask themselves the question: what benefit is conferred when a safety measure “saves” a person’s life?

The answer is that the saved person is simply left to pursue their life as normal, so the actual benefit is the restoration of that person’s future existence. Since we cannot know how long any particular person is going to live, we do the next best thing and use measured historical averages, as published annually by the Office of National Statistics. The gain in life expectancy that the safety measure brings about can be weighed against the cost of that safety measure using the Judgement value, which mediates the balance using risk-aversion.

The Judgement (J) value is the ratio of the actual expenditure to the maximum reasonable expenditure. A J-value of two suggests that twice as much is being spent as is reasonably justified, while a J-value of 0.5 implies that safety spend could be doubled and still be acceptable. It is a ratio that throws some past safety decisions into sharp relief.

For example, a few years ago energy firm BNFL authorised a nuclear clean-up plant with a J-value of over 100, while at roughly the same time the medical quango NICE was asked to review the economic case for three breast cancer drugs found to have J-values of less than 0.05.
Risky business. shutterstock
The Government of the time seemed happy to sanction spending on a plant that might just prevent a cancer, but wanted to think long and hard about helping many women actually suffering from the disease. A new and objective science of safety is clearly needed to provide the level playing field that has so far proved elusive.


Putting a price on life


Current safety methods are based on the “value of a prevented fatality” or VPF. It is the maximum amount of money considered reasonable to pay for a safety measure that will reduce by one the expected number of preventable premature deaths in a large population. In 2010, that value was calculated at £1.65m.

This figure simplistically applies equally to a 20-year-old and a 90-year-old, and is in widespread use in the road, rail, nuclear and chemical industries. Some (myself included) argue that the method used to reach this figure is fundamentally flawed.

In the modern industrial world, however, we are all exposed to dangers at work and at home, on the move and at rest. We need to feel safe, and this comes at a cost. The problems and confusions associated with current methods reinforce the urgent need to develop a new science of safety. Not to do so would be too much of a risk.

---------------------------------------------------------
The ConversationThis blog is written by Cabot Institute member Philip Thomas, Professor of Risk Management, University of Bristol.  This article was originally published on The Conversation. Read the original article.
Philip Thomas

Popular posts from this blog

Are you a journalist looking for climate experts? We've got you covered

We've got lots of media trained climate change experts. If you need an expert for an interview, here is a list of Caboteers you can approach. All media enquiries should be made via  Victoria Tagg , our dedicated Media and PR Manager at the University of Bristol. Email victoria.tagg@bristol.ac.uk or call +44 (0)117 428 2489. Climate change / climate emergency / climate science / climate-induced disasters Dr Eunice Lo - expert in changes in extreme weather events such as heatwaves and cold spells , and how these changes translate to negative health outcomes including illnesses and deaths. Follow on Twitter @EuniceLoClimate . Professor Daniela Schmidt - expert in the causes and effects of climate change on marine systems . Dani is also a Lead Author on the IPCC reports. Dani will be at COP26. Dr Katerina Michalides - expert in drylands, drought and desertification and helping East African rural communities to adapt to droughts and future climate change. Follow on Twitter @_k

Urban gardens are crucial food sources for pollinators - here’s what to plant for every season

A bumblebee visits a blooming honeysuckle plant. Sidorova Mariya | Shutterstock Pollinators are struggling to survive in the countryside, where flower-rich meadows, hedges and fields have been replaced by green monocultures , the result of modern industrialised farming. Yet an unlikely refuge could come in the form of city gardens. Research has shown how the havens that urban gardeners create provide plentiful nectar , the energy-rich sugar solution that pollinators harvest from flowers to keep themselves flying. In a city, flying insects like bees, butterflies and hoverflies, can flit from one garden to the next and by doing so ensure they find food whenever they need it. These urban gardens produce some 85% of the nectar found in a city. Countryside nectar supplies, by contrast, have declined by one-third in Britain since the 1930s. Our new research has found that this urban food supply for pollinators is also more diverse and continuous

#CabotNext10 Spotlight on City Futures

In conversation with Dr Katharina Burger, theme lead at the Cabot Institute for the Environment. Dr Katharina Burger Why did you choose to become a theme leader at Cabot Institute ? I applied to become a Theme Leader at Cabot, a voluntary role, to bring together scientists from different faculties to help us jointly develop proposals to address some of the major challenges facing our urban environments. My educational background is in Civil Engineering at Bristol and I am now in the School of Management, I felt that this combination would allow me to build links and communicate across different ways of thinking about socio-technical challenges and systems. In your opinion, what is one of the biggest global challenges associated with your theme? (Feel free to name others if there is more than one) The biggest challenge is to evolve environmentally sustainable, resilient, socially inclusive, safe and violence-free and economically productive cities. The following areas are part of this c