Skip to main content

Scaling up probabilities in space

Suppose you have some location or small area, call it location A, and you have decided for this location the 1-in-100 year event for some magnitude in that area is ‘x’. That is to say, the probability of an event with magnitude exceeding ‘x’ in the next year at location A is 1/100. For clarity, I would rather state the exact definition, rather than say ‘1-in-100 year event’.

Now suppose you have a second location, call it location B, and you are worried about an event exceeding ‘x’ in the next year at either location A or location B. For simplicity suppose that ‘x’ is the 1-in-100 year event at location B as well, and suppose also that the magnitude of events at the two locations are probabilistically independent. In this case “an event exceeding ‘x’ in the next year at either A or B” is the logical complement of “no event exceeding ‘x’ in the next year at A, AND no event exceeding ‘x’ in the next year at B”; in logic this is known as De Morgan’s Law. This gives us the result:

Pr(an event exceeding ‘x’ in the next year at either A or B) = 1 – (1 – 1/100) * (1 – 1/100).

This argument generalises to any number of locations. Suppose our locations are numbered from 1 up to n, and let ‘p_i’ be the probability that the magnitude exceeds some threshold ‘x’ in the next year at location i. I will write ‘somewhere’ for ‘somewhere in the union of the n locations’. Then, assuming probabilistic independence as before,

Pr(an event exceeding ‘x’ in the next year somewhere) = 1 – (1 – p_1) * … * (1 – p_n).

If the sum of all of the p_i’s is less than about 0.1, then there is a good approximation to this value, namely

Pr(an event exceeding ‘x’ in the next year somewhere) = p_1 + … + p_n, approximately.

But don’t use this approximation if the result is more than about 0.1, use the proper formula instead.

One thing to remember is that if ‘x’ is the 1-in-100 year event for a single location, it is NOT the 1-in-100 year event for two or more locations.  Suppose that you have ten locations, and x is the 1-in-100 year event for each location, and assume probabilistic independence as before.  Then the probability of an event exceeding ‘x’ in the next year somewhere is 1/10. In other words, ‘x’ is the 1-in-10 year event over the union of the ten locations. Conversely, if you want the 1-in-100 year event over the union of the ten locations then you need to find the 1-in-1000 year event at an individual location.

These calculations all assumed that the magnitudes were probabilistically independent across locations. This was for simplicity: the probability calculus tells us exactly how to compute the probability of an event exceeding ‘x’ in the next year somewhere, for any joint distribution of the magnitudes at the locations. This is more complicated: ask your friendly statistician (who will tell you about the awesome inclusion/exclusion formula). The basic message doesn’t change, though. The probability of exceeding ‘x’ somewhere depends on the number of locations you are considering. Or, in terms of areas, the probability of exceeding ‘x’ somewhere depends on the size of the region you are considering.

Blog post by Prof. Jonathan Rougier, Professor of Statistical Science.

First blog in series here.

Second blog in series here.

Third blog in series here.

Fourth blog in series here.

Popular posts from this blog

Converting probabilities between time-intervals

This is the first in an irregular sequence of snippets about some of the slightly more technical aspects of uncertainty and risk assessment.  If you have a slightly more technical question, then please email me and I will try to answer it with a snippet. Suppose that an event has a probability of 0.015 (or 1.5%) of happening at least once in the next five years. Then the probability of the event happening at least once in the next year is 0.015 / 5 = 0.003 (or 0.3%), and the probability of it happening at least once in the next 20 years is 0.015 * 4 = 0.06 (or 6%). Here is the rule for scaling probabilities to different time intervals: if both probabilities (the original one and the new one) are no larger than 0.1 (or 10%), then simply multiply the original probability by the ratio of the new time-interval to the original time-interval, to find the new probability. This rule is an approximation which breaks down if either of the probabilities is greater than 0.1. For example

Cabot office weekly roundup – 20 July 2012

Herbert Huppert This week we have been holding our Cabot Summer School on risk and uncertainty in natural hazards .   The week has gone very well and I have received some very positive comments from attendees.   We had some fantastic speakers including Herbert Huppert, Jonty Rougier, Steve Sparks, Willy Aspinall, Li Chen, Tamsin Edwards, Philippa Bayley and Thorsten Wagener.   Cabot would like to say a great big thank you to all of you for making the Cabot Summer School such a success.   We’re very much looking forward to next year. Paul F. Hoffman This week, Cabot member Rich Pancost secured Paul F. Hoffman of Snowball Earth fame as the next Science Faculty Colloquium speaker in September.   I saw the new templates for our website today.   Its all looking good and I’m quite excited about the implementation of its new look.   By the end of the summer I hope to have it all up and running. We would like to congratulate Cabot member Professor Mark Eisler and

Discussing Rio+20 at the House of Lords

Last month I went to the House of Lords for a meeting of the All party group for international development and the environment.  The morning’s question was: Where next for sustainable development after Rio+20?  I’ll give a brief resume of who said what, with some of my thoughts following over the next weeks.... Joan Walley , MP for Stoke-on-Trent North opened the morning's reflections on Rio.  She chairs the Environmental Audit Committee which monitors action across different government departments. At the top level, Rio lacked vision and clear objectives. Her select committee really tried to engage with government, but there was no commitment from the PM that he was going, and no clear vision from them.  She felt the process needs to be reinvigorated - connecting, collaborating, and understanding the details - e.g. how the proposed Sustainable Development Goals will link with the Millennium Development Goals. Stephen Hale from Oxfam   asked how do we accelerate the p