Skip to main content

Indoor air pollution: The 'killer in the kitchen'

Image credit Clean Cooking Alliance.

Approximately 3 billion people around the world rely on biomass fuels such as wood, charcoal and animal dung which they burn on open fires and using inefficient stoves to meet their daily cooking needs.

Relying on these types of fuels and cooking technologies is a major contributor to indoor air pollution and has serious negative health impacts, including acute respiratory illnesses, pneumonia, strokes, cataracts, heart disease and cancer.

The World Health Organization estimates that indoor air pollution causes nearly 4 million premature deaths annually worldwide – more than the deaths caused by malaria and tuberculosis combined. This led the World Health Organization to label household air pollution “The Killer in the Kitchen”.

As illustrated on the map below, most deaths from indoor air pollution occur in low- and middle-income countries across Africa and Asia. Women and children are disproportionately exposed to the risks of indoor air pollution as they typically spend the most time cooking.

Number of deaths attributable to indoor air pollution in 2017. Image credit Our World in Data


Replacing open fires and inefficient stoves with modern, cleaner solutions is essential to reduce indoor air pollution and personal exposure to emissions. However, research suggests that only significant reductions in exposure can tangibly reduce negative health impacts. 

The Clean Cooking Alliance, established in 2010, has focused mainly on the dissemination of improved cookstoves (ICS) – wood-burning or charcoal stoves designed to be much more efficient than more traditional models – with some success. 

Randomised control trials of sole use of ICS have shown reductions in pneumonia and the duration of respiratory infections in children. However, other studies, including some funded by the Alliance, have shown that ICS have not performed well enough in the field to sufficiently reduce indoor air pollution to lessen health risks such as pneumonia and heart disease.

Alternative fuels such as liquid petroleum gas (LPG), biogas and ethanol present other options for cooking with LPG already prevalent in many countries across the world.

LPG is clean-burning and produces much less carbon dioxide than burning biomass but is still a fossil fuel. 

Biogas is a clean, renewable fuel made from organic waste, and ethanol is a clean biofuel made from a variety of feedstocks. 

Image credit PEEDA












                                                                                                                                                   
Electric cooking, once seen as a pipe dream for developing countries, is becoming more feasible and affordable due to improvements and reductions in costs of technologies like solar panels and batteries.

Improved cookstoves, alternative fuels and electric cooking have been gaining traction but there is still a long way to go to solving the deadly problem of indoor air pollution. 

----------------------
This blog is written by Cabot Institute member Peter Thomas, Faculty of Engineering, University of Bristol. Peter's research focusses on access to energy in humanitarian relief. This blog is co-written by Will Clements, Faculty of Engineering.
Peter Thomas

Popular posts from this blog

Are you a journalist looking for climate experts? We've got you covered

We've got lots of media trained climate change experts. If you need an expert for an interview, here is a list of Caboteers you can approach. All media enquiries should be made via  Victoria Tagg , our dedicated Media and PR Manager at the University of Bristol. Email victoria.tagg@bristol.ac.uk or call +44 (0)117 428 2489. Climate change / climate emergency / climate science / climate-induced disasters Dr Eunice Lo - expert in changes in extreme weather events such as heatwaves and cold spells , and how these changes translate to negative health outcomes including illnesses and deaths. Follow on Twitter @EuniceLoClimate . Professor Daniela Schmidt - expert in the causes and effects of climate change on marine systems . Dani is also a Lead Author on the IPCC reports. Dani will be at COP26. Dr Katerina Michalides - expert in drylands, drought and desertification and helping East African rural communities to adapt to droughts and future climate change. Follow on Twitter @_k

Urban gardens are crucial food sources for pollinators - here’s what to plant for every season

A bumblebee visits a blooming honeysuckle plant. Sidorova Mariya | Shutterstock Pollinators are struggling to survive in the countryside, where flower-rich meadows, hedges and fields have been replaced by green monocultures , the result of modern industrialised farming. Yet an unlikely refuge could come in the form of city gardens. Research has shown how the havens that urban gardeners create provide plentiful nectar , the energy-rich sugar solution that pollinators harvest from flowers to keep themselves flying. In a city, flying insects like bees, butterflies and hoverflies, can flit from one garden to the next and by doing so ensure they find food whenever they need it. These urban gardens produce some 85% of the nectar found in a city. Countryside nectar supplies, by contrast, have declined by one-third in Britain since the 1930s. Our new research has found that this urban food supply for pollinators is also more diverse and continuous

#CabotNext10 Spotlight on City Futures

In conversation with Dr Katharina Burger, theme lead at the Cabot Institute for the Environment. Dr Katharina Burger Why did you choose to become a theme leader at Cabot Institute ? I applied to become a Theme Leader at Cabot, a voluntary role, to bring together scientists from different faculties to help us jointly develop proposals to address some of the major challenges facing our urban environments. My educational background is in Civil Engineering at Bristol and I am now in the School of Management, I felt that this combination would allow me to build links and communicate across different ways of thinking about socio-technical challenges and systems. In your opinion, what is one of the biggest global challenges associated with your theme? (Feel free to name others if there is more than one) The biggest challenge is to evolve environmentally sustainable, resilient, socially inclusive, safe and violence-free and economically productive cities. The following areas are part of this c