Skip to main content

Sowing the seeds of collaborations to tackle African food insecurity



A group of early career researchers from 11 African countries got together in Bristol, UK, this month for a two-week training event. Nothing so unusual about that, you may think.

Yet this course, run by the Community Network for African Vector-Borne Plant Viruses (CONNECTED), broke important new ground.

The training brought together an unusual blend of researchers: plant virologists and entomologists studying insects which transmit plant diseases, as an important part of the CONNECTED project’s work to find new solutions to the devastation of many food crops in Sub-Saharan African countries.

The CONNECTED niche focus on vector-borne plant disease is the reason for bringing together insect and plant pathology experts, and plant breeders too. The event helped forge exciting new collaborations in the fight against African poverty, malnutrition and food insecurity.

‘V4’ – Virus Vector Vice Versa – was a fully-funded residential course which attracted great demand when it was advertised. Places were awarded by competitive application, with funding awarded to cover travel, accommodation, subsistence and all training costs. For every delegate who attended, five applicants were unsuccessful.

The comprehensive programme combined: scientific talks; general lab training skills; specific virology and entomology lecture and practical work; workshops; field visits, career development, mentoring, and desk-based projects.



Across the fortnight delegates received plenty of peer mentoring and team-building input, as well as an afternoon focused on ‘communicating your science.’

New collaborations will influence African agriculture for years to come

There’s little doubt that the June event, hosted by The University of Bristol, base of CONNECTED Network Director Professor Gary Foster, has sown seeds of new alliances and partnerships that can have global impact on vector-borne plant disease in Sub-Saharan Africa for many years to come.
CONNECTED network membership has grown in its 18 months to a point where it’s approaching 1,000 researchers, from over 70 countries. The project, which derived its funding from the Global Challenges Research Fund, is actively looking at still more training events.

The V4 training course follows two successful calls for pump-prime research funding, leading to nine projects now operating in seven different countries, and still many more to come. Earlier in the year CONNECTED ran a successful virus diagnostics training event in Kenya, in close partnership with BecA-ILRI Hub. One result of that training was that its 19 delegates were set to share their new knowledge and expertise with a staggering 350 colleagues right across the continent.



Project background

Plant diseases significantly limit the ability of many of Sub-Saharan African countries to produce enough staple and cash crops such as cassava, sweet potato, maize and yam. Farmers face failing harvests and are often unable to feed their local communities as a result. The diseases ultimately hinder the countries’ economic and social development, sometimes leading to migration as communities look for better lives elsewhere.
The CONNECTED network project is funded by a £2 million grant from the UK government’s Global Challenges Research Fund, which supports research on global issues that affect developing countries. It is co-ordinated by Prof. Foster from the University of Bristol School of Biological Sciences, long recognised as world-leading in plant virology and vector-transmitted diseases, with Professor Neil Boonham, from Newcastle University its Co-Director. The funding is being used to build a sustainable network of scientists and researchers to address the challenges. The University of Bristol's Cabot Institute, of which Prof. Foster is a member, also provides input and expertise.

----------------------

This blog is written by Richard Wyatt, Communications Officer for the CONNECTED network. 



Popular posts from this blog

Converting probabilities between time-intervals

This is the first in an irregular sequence of snippets about some of the slightly more technical aspects of uncertainty and risk assessment.  If you have a slightly more technical question, then please email me and I will try to answer it with a snippet. Suppose that an event has a probability of 0.015 (or 1.5%) of happening at least once in the next five years. Then the probability of the event happening at least once in the next year is 0.015 / 5 = 0.003 (or 0.3%), and the probability of it happening at least once in the next 20 years is 0.015 * 4 = 0.06 (or 6%). Here is the rule for scaling probabilities to different time intervals: if both probabilities (the original one and the new one) are no larger than 0.1 (or 10%), then simply multiply the original probability by the ratio of the new time-interval to the original time-interval, to find the new probability. This rule is an approximation which breaks down if either of the probabilities is greater than 0.1. For example

1-in-200 year events

You often read or hear references to the ‘1-in-200 year event’, or ‘200-year event’, or ‘event with a return period of 200 years’. Other popular horizons are 1-in-30 years and 1-in-10,000 years. This term applies to hazards which can occur over a range of magnitudes, like volcanic eruptions, earthquakes, tsunamis, space weather, and various hydro-meteorological hazards like floods, storms, hot or cold spells, and droughts. ‘1-in-200 years’ refers to a particular magnitude. In floods this might be represented as a contour on a map, showing an area that is inundated. If this contour is labelled as ‘1-in-200 years’ this means that the current rate of floods at least as large as this is 1/200 /yr, or 0.005 /yr. So if your house is inside the contour, there is currently a 0.005 (0.5%) chance of being flooded in the next year, and a 0.025 (2.5%) chance of being flooded in the next five years. The general definition is this: ‘1-in-200 year magnitude is x’ = ‘the current rate for eve

Coconuts and climate change

Before pursuing an MSc in Climate Change Science and Policy at the University of Bristol, I completed my undergraduate studies in Environmental Science at the University of Colombo, Sri Lanka. During my final year I carried out a research project that explored the impact of extreme weather events on coconut productivity across the three climatic zones of Sri Lanka. A few months ago, I managed to get a paper published and I thought it would be a good idea to share my findings on this platform. Climate change and crop productivity  There has been a growing concern about the impact of extreme weather events on crop production across the globe, Sri Lanka being no exception. Coconut is becoming a rare commodity in the country, due to several reasons including the changing climate. The price hike in coconuts over the last few years is a good indication of how climate change is affecting coconut productivity across the country. Most coconut trees are no longer bearing fruits and thos