Skip to main content

Will global food security be affected by climate change?

The Intergovernmental Panel on Climate Change (IPCC) has just released an important report outlining the evidence for past and future climate change. Unfortunately it confirms our fears; climate change is occurring at an unprecedented rate and humans have been the dominant cause since the 1950s. Atmospheric carbon dioxide (CO₂) has reached the highest level for the past 800,000 years, which has contributed to the increased temperatures and extreme weather we have already started to see.

As a plant scientist, I’m interested in the complicated effects that increased temperatures, carbon dioxide and changes in rainfall will have on global food security. Professor David Lobell and Dr Sharon Gourdji wrote about some of the possible effects of climate change on crop yield last year, summarised below alongside IPCC data.

Increased CO₂

Image credit: David Monniaux
Plants produce their food in a process called photosynthesis, which uses the energy of the sun to combine CO₂ and water into sugars (food) and oxygen (a rather useful waste product). The IPCC reports that we have already increased atmospheric CO₂ levels by 40% since pre-industrial times, which means it is at the highest concentration for almost a million years. Much of this has accumulated in the atmosphere (terrible for global warming) or been absorbed into the ocean (causing ocean acidification) however it may be good news for plants.


Lobell and Gourdji wrote that higher rates of photosynthesis are likely to increase growth rates and yields of many crop plants. Unfortunately, rapid growth can actually reduce the yields of grain crops like wheat, rice and maize. The plants mature too quickly and do not have enough time to move the carbohydrates that we eat into their grains. 

High temperatures

The IPCC predicts that by the end of the 21st century, temperatures will be 1.5C to 4.5C higher than they were at the start of it. There will be longer and more frequent heat waves and cold weather will become less common.

Extremely high temperatures can directly damage plants, however even a small increase in temperature can impact yields. High temperatures means plants can photosynthesise and grow more quickly, which can either improve or shrink yields depending on the crop species (see above). Lobell and Gourdji noted that milder spring and autumn seasons would extend the growing period for plants into previously frosty times of year allowing new growth periods to be exploited, although heat waves in the summer may be problematic. 

Image credit: IPCC AR5 executive summary

Flooding and droughts

In the future, dry regions will become drier whilst rainy places will get wetter. The IPCC predicts that monsoon areas will expand and increase flooding, but droughts will become longer and more intense in other regions.

In flooded areas, waterlogged soils could prevent planting and damage those crops already established. Drought conditions mean that plants close the pores on the leaves (stomata) to prevent water loss, however this means that carbon dioxide cannot enter the leaves for photosynthesis and growth will stop. This may be partly counteracted by the increased carbon dioxide in the air, allowing plants to take in more CO₂ without fully opening their stomata, reducing further water loss and maintaining growth.

Image credit: IPCC AR5 executive summary


These factors (temperature, CO₂ levels and water availability) interact to complicate matters further. High carbon dioxide levels may mean plants need fewer stomata, which would reduce the amount of water they lose to the air. On the other hand, higher temperatures and/or increased rainfall may mean that crop diseases spread more quickly and reduce yields.

Overall Lobell and Gourdji state that climate change is unlikely to result in a net decline in global crop yields, although there will likely be regional losses that devastate local communities. They argue that climate change may prevent the increases in crop yields required to support the growing global population however.

The effect of climate change on global crop yields is extremely complex and difficult to predict, however floods, drought and extreme temperatures will mean that its impact on global food security (when all people at all times have access to sufficient, safe, nutritious food to maintain a healthy and active life”) will almost certainly be devastating.

On the basis of the IPCC report and the predicted impact of climate change on all aspects of our planet, not just food security, it is critical that we act quickly to prevent temperature and CO₂ levels rising any further.

This blog is written by Sarah Jose, Biological Sciences, University of Bristol
You can follow Sarah on Twitter @JoseSci


Sarah Jose

Popular posts from this blog

Converting probabilities between time-intervals

This is the first in an irregular sequence of snippets about some of the slightly more technical aspects of uncertainty and risk assessment.  If you have a slightly more technical question, then please email me and I will try to answer it with a snippet. Suppose that an event has a probability of 0.015 (or 1.5%) of happening at least once in the next five years. Then the probability of the event happening at least once in the next year is 0.015 / 5 = 0.003 (or 0.3%), and the probability of it happening at least once in the next 20 years is 0.015 * 4 = 0.06 (or 6%). Here is the rule for scaling probabilities to different time intervals: if both probabilities (the original one and the new one) are no larger than 0.1 (or 10%), then simply multiply the original probability by the ratio of the new time-interval to the original time-interval, to find the new probability. This rule is an approximation which breaks down if either of the probabilities is greater than 0.1. For exa...

1-in-200 year events

You often read or hear references to the ‘1-in-200 year event’, or ‘200-year event’, or ‘event with a return period of 200 years’. Other popular horizons are 1-in-30 years and 1-in-10,000 years. This term applies to hazards which can occur over a range of magnitudes, like volcanic eruptions, earthquakes, tsunamis, space weather, and various hydro-meteorological hazards like floods, storms, hot or cold spells, and droughts. ‘1-in-200 years’ refers to a particular magnitude. In floods this might be represented as a contour on a map, showing an area that is inundated. If this contour is labelled as ‘1-in-200 years’ this means that the current rate of floods at least as large as this is 1/200 /yr, or 0.005 /yr. So if your house is inside the contour, there is currently a 0.005 (0.5%) chance of being flooded in the next year, and a 0.025 (2.5%) chance of being flooded in the next five years. The general definition is this: ‘1-in-200 year magnitude is x’ = ‘the current rate for eve...

Coconuts and climate change

Before pursuing an MSc in Climate Change Science and Policy at the University of Bristol, I completed my undergraduate studies in Environmental Science at the University of Colombo, Sri Lanka. During my final year I carried out a research project that explored the impact of extreme weather events on coconut productivity across the three climatic zones of Sri Lanka. A few months ago, I managed to get a paper published and I thought it would be a good idea to share my findings on this platform. Climate change and crop productivity  There has been a growing concern about the impact of extreme weather events on crop production across the globe, Sri Lanka being no exception. Coconut is becoming a rare commodity in the country, due to several reasons including the changing climate. The price hike in coconuts over the last few years is a good indication of how climate change is affecting coconut productivity across the country. Most coconut trees are no longer bearing fruits and ...